

ONERA

THE FRENCH AEROSPACE LAB

return on innovation

www.onera.fr

Worshop: Missing Data in Physics

11-12 May 2015 Nice (France)

Impact of the twangs on the GRACE data recovery

B. Foulon ONERA, The French Aerospace Lab

bernard.foulon@onera.fr

return on innovation

Acceleration disturbance on board Earth Gravity Field satellite missions

- Twang = sudden spike followed by an oscillating decay
- During last decade 3 Earth gravity field missions with ultra-sensitive electrostatic accelerometers onboard

CHAMP

July 2000 - sept 2010 1 accelerometer 10⁻⁹ ms⁻²/Hz^{1/2}

GRACE

march 2002 - (2017 ?) 2 × 1 accelerometer 10^{-10} ms⁻²/Hz^{1/2}

GOCE

march 2009 – nov 2013 EGG = 6 accelerometers $2 \times 10^{-12} \text{ ms}^{-2}/\text{Hz}^{1/2}$

CHAMP Mission

THE FRENCH AEROSPACE LAS

CHAMP Mission : Large spikes induced by Sun/Penumbra transitions

CHAMP Mission : Thruster activation spikes along linear acceleration axes

THE FRENCH AEROSPACE LAB

CHAMP Mission : Thruster activation spikes along angular acceleration axes

THE FRENCH AEROSPACE LAB

7

CHAMP Mission : Boom excitation twangs induced by thrusters

THE FRENCH AEROSPACE LAB

CHAMP Mission : Spikes induced by heaters activation at 10 Hz multiples

CHAMP Mission data: Detection and filtering of spikes and twangs

Mean filtering method

Compute the mean m0 and the standard deviation σ on a limited moving window

Detect the points out of the [m0-3 σ , m0+3 σ] range

Replace these points by m0

→ Very fast filtering but not very efficient, especially in case of multiple spikes in the chosen window

• Median filtering method

Same principle for the detection but the point value is replaced by the median value of the window instead of the mean

→ Need a narrow window and a steady signal

• Polynomial filtering method

In a moving window, the 3rd degree polynomial function fitting the signal is computed by a least squares method. The corresponding standard deviation σ is used for the selection with a 3 σ criteria between the data in the window and the values taken by the polynomial function.

The selected points are removed and the polynomial function is computed a second time in order to provide a better correction,

An overlap (50%) of the moving window is arbitrary chosen.

CHAMP Mission data: Comparison between the filtering methods

CHAMP Mission data : Polynomial method, impact of the window width

CHAMP Mission data : Polynomial method, impact on the noise

Test of the polynomial method on a signal composed of:

- sine at 0,01Hz, magnitude 5
- white noise, $\sigma = 1$
- heater spikes, magnitude + or 10

Window : 40 s The heater spikes are removed and the signal and the noise are preserved

GRACE Mission : Accelerometer configuration inside the satellite

Accelerometer Sensor Unit mounted on the support frame with the star camera baffles

GRACE Mission : Heater switch spikes

ONERA THE FRENCH ARROSPACE LAB

GRACE Mission heater configuration

GRACE Mission : Heater signature

GRACE Mission : heater free period

THE FRENCH ARROSPACE LAS

GRACE Mission : Spike correlated with Magneto Torquer current variation

THE FRENCH ARROSPACE LAS

GRACE Mission : Modeling and reduction

After reduction of heater and magnetic perturbations, the twangs remain

GRACE Mission : Twangs along the radial direction

GRACE Mission : twang characteristics

GRACE Mission : Variety of identified twangs

CHAMP Mission : twang distribution around South Pole

CHAMP Mission : twang distribution wrt nadir side illumination

THE FRENCH ARROSPACE LAS

25

GRACE Mission : Penumbra transition

Solar radiation pressure acceleration during shadow exit, GRACE-B on 2008/01/02

GRACE Mission : Twang distribution wrt Earth albedo

GOCE Mission : Beam-out like and clank-like events

THE FRENCH AEROSPACE LAB

GOCE Mission : Thermal control of the satellite

4.4.2 TCS Characteristics #1

- Satellite Body insulated by 30-layered MLI. Beta-cloth as outermost layer
- Test showed that this surface is micro-vibration free
- Radiator surfaces coated by Teflon SSM foil, ITO coated
- OSRs used for radiators oriented in RAM direction

Page 14 GOCE System CDR - Platform Overview - CDR_PL_pres.ppt

ASTRIUM

GOCE Mission : Thermal control of the satellite

4.4.2 TCS Characteristics #2

- Electrical heater system for heating of:
 - Xenon tank and pipework
 - Unit temperature control
 - EGG I/F heaters; high stability and small gradients
 - S/A wings
- Heater Control Concept:
 - 48 nominal/ 48 redundant heater lines.
 - Majority voted temperature sensors
 - 128 thermistors and 64 PT1000

GOCE System CDR - Platform Overview - CDR_PL_pres.ppt

GOCE Mission : Spectral lines at 1 Hz in DFAC

Spectral lines in DFAC outputs@ ~1 Hz and multiples

Due to thermal control regulator Heaters on/off with duty cycle based on period of 0.9984 s (1.0016 Hz)

GOCE Mission : Effect of thermal lines on accelerometer outputs

THE FRENCH ARROSPACE LAB

Thank you for your attention

Aknowledgment & references

- Danya Hudson, Master of Science in Engineering The University of Texas at Austin December 2003
- Gregory Pradels, PHD Thesis UMPC October 2003
- Jakob Flury, Institut für Erdmessung (IfE) Leibniz Universität Hannover
- Nadja Peterseim, Dr.-Ing. Thesis TU München March 2014

return on innovation