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Introduction

The problem

The simplified measurement equation reads :
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We want to detect and estimate the EP violation signal. In order to reject
the bias of the perturbation terms, a linear regression analysis must be
performed to estimate δ and all the instrumental parameters.

We are annoyed by :

deterministic perturbations : Earth
gravity gradient, inertial forces,
instrument defects...

random perturbations : noise,
unpredicted accelerations peaks ⇒
corrupted or unavailable information

2 / 17 Missing data in physics, May 2015, Nice



Introduction

Formulation

The problem of the regression analysis (calibration or EP session) can be
formalized in a simple manner :

y = M (Aβ + n)

y observed time series vector (N × 1)
M mask matrix (diagonal) : Mii = 1 if yi is observed, Mii = 0 otherwise.
A model matrix (N ×K)
β vector of parameters to be estimated (K × 1)
n noise vector of unknown power spectral density Sn(f) (N × 1)

The least squares solution is :

β̂ = (A∗M∗MA)
−1
A∗M∗y
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Impact of missing data

Uncertainty and missing data

It can be shown that in the case of a harmonic signal at fEP

(Ai = sin(2πfEP iτs)) the least squares standard error is proportional to the
expectation of the masked noise periodogram in the Fourier space :

Var[β] ≈ 2

N(1− α)2
E [PMn,N (fEP)]

where α is the fraction of missing data.
The periodogram PMn,N (f) of the masked noise Mn has been defined as :

PMn,N (f) =
1

N

∣∣∣∣∣
N−1∑
i=0

Miinie
−2jπfiτs

∣∣∣∣∣
2

4 / 17 Missing data in physics, May 2015, Nice



Impact of missing data

An example

The missing data induce a convolution effect between the noise and the
observation window.

E [PMn,N (f)] =

∫ fs
2

− fs
2

PM,N (f − f ′)Sn(f ′)df ′

With a complete data set : σδ = 1× 10−15
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Impact of missing data

Performance of ordinary least squares

In the presence of colored noise, the variance of the ordinary least squares
estimate is highly sensitive to the loss of data.
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Impact of missing data

Problem analysis

So we want to perform a linear regression with :

unknown colored noise

frequent and short data gaps

large data samples (N > 106)

The classical Fourier analysis or ordinary least squares fail in estimating the
parameters with a good precision. The problem of such methods is that
they are not optimal with respect to the variance.
⇒ Solution : perform a general least squares-like estimate on the observed
data yo (where Mi,i = 1) :

β̂ = (Ao
∗Σo

−1Ao)
−1 ·Ao∗Σo−1yo

⇒ The noise covariance matrix (⇔ the PSD) must be estimated
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Impact of missing data

Problem analysis

Pb. 1 A spectral method to estimate the PSD is difficult in the presence of
irregularly sampled data
Pb. 2 The matrix Σo is not diagonal in Fourier space. For large samples, it
cannot be stored nor inverted directly
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The Kalman-AR model analysis (KARMA)

Implemented solution

To solve these problems, we implement a data analysis method with the
following steps :

1 Estimation of the noise PSD with an autoregressive (AR) model :
temporal model, Pb. 1 solved.

2 Whitening of the data using an orthogonalization process with a
Kalman filter, no matrix storage, Pb. 2 solved.

3 Estimation of the parameters with an approximate generalized least
squares estimator constructed with the orthogonal vector
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The Kalman-AR model analysis (KARMA)

Estimation of AR parameters

Step 1 : estimation of AR parameters

n(t) + a1n(t− 1) + ...+ apn(t− p) = ε(t)

With :
ε(t) ∼ N

(
0, σ2)

Estimation of a1, ..., ap, σ
2 with Burg’s algorithm adapted to missing data.

The idea is to fit any arbitrary power
spectral density by a rational function in
exp(−2iπf/fs) of the form :

S(f) =
σ2/fs∣∣∣1 + a1e

−2iπf/fs + ... + ape−2iπpf/fs
∣∣∣2
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The Kalman-AR model analysis (KARMA)

Whitening

Step 2 : data orthogonalization

We want to calculate the whitened vectors eo = L−1yo et Eo = L−1Ao
without store nor invert L, where L is the Cholesky decomposition of Σo :

Σo = LL∗

To do this we use a Kalman filter.
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The Kalman-AR model analysis (KARMA)

Estimation

Step 3 : estimation of regression parameters
From the previous calculations one can construct an estimator with a quasi
minimal variance :

β̂ = (E∗oEo)
−1
E∗oeo

≈ (Ao
∗Σo

−1Ao)
−1 ·Ao∗Σo−1yo

⇒ Eo,eo calculated with Kalman outputs : minimize the variance without
computing Σo
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The Kalman-AR model analysis (KARMA)

Results

Standard deviation of the estimation the EP violation parameter δ :

Mask Ordinary least squares KARMA

Complete data 1.0× 10−15 9.6× 10−16

Tank crackles 6.5× 10−14 1.1× 10−15
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The Kalman-AR model analysis (KARMA)

Data reconstruction

Once one has estimated the noise PSD and the regression parameters β, it is
possible to impute missing data by calculating their conditional expectations.
yo : observed data vector
ym : missing data vector

Sn(f)

14 / 17 Missing data in physics, May 2015, Nice



The Kalman-AR model analysis (KARMA)

Data reconstruction

Once one has estimated the noise PSD and the regression parameters β, it is
possible to impute missing data by calculating their conditional expectations.
yo : observed data vector
ym : missing data vector

Sn(f) ⇒ R(t)

14 / 17 Missing data in physics, May 2015, Nice



The Kalman-AR model analysis (KARMA)

Data reconstruction

Once one has estimated the noise PSD and the regression parameters β, it is
possible to impute missing data by calculating their conditional expectations.
yo : observed data vector
ym : missing data vector

Sn(f) ⇒ R(t) ⇒ Σi,j = R(i− j)

14 / 17 Missing data in physics, May 2015, Nice



The Kalman-AR model analysis (KARMA)

Data reconstruction

Once one has estimated the noise PSD and the regression parameters β, it is
possible to impute missing data by calculating their conditional expectations.
yo : observed data vector
ym : missing data vector

Conditional expectation of the missing data given the observed data :

µm|o = µm + ΣmoΣ
−1
oo (yo − µo)
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Conclusion

Conclusion

For linear regression analysis with highly correlated noise and random
missing data, ignoring the missing data or basic interpolation can lead
to significant increase of the uncertainty in an ordinary least square
fitting approach.

To construct an estimator with a variance close to the minimal bound,
the noise covariance must be estimated.

We implemented a method based on a high order AR fit of the noise,
which shows good results (reduction of the standard error by a factor
60).

The method provides outputs for data reconstruction : this can be
useful for “visual convenience” or to improve parameter estimation
(e.g. EM algorithm).
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Conclusion

Questions
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