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Matrix factorisation models

Data often available in matrix form.
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Matrix factorisation models
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Matrix factorisation models

Data often available in matrix form.
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Matrix factorisation models

Data often available in matrix form.
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Matrix factorisation models

≈ dictionary learning
low-rank approximation
factor analysis
latent semantic analysis

≈

data X dictionary W activations H
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Matrix factorisation models
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Matrix factorisation models

for dimensionality reduction (coding, low-dimensional embedding)

≈
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Matrix factorisation models

for unmixing (source separation, latent topic discovery)

≈
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Matrix factorisation models

for interpolation (collaborative filtering, image inpainting)

≈
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Nonnegative matrix factorisation
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I data V and factors W, H have nonnegative entries.

I nonnegativity of W ensures interpretability of the dictionary, because
patterns wk and samples vn belong to the same space.

I nonnegativity of H tends to produce part-based representations, because
subtractive combinations are forbidden.

Early work by Paatero and Tapper (1994), landmark Nature paper by Lee and Seung (1999)
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49 images among 2429 from MIT’s CBCL face dataset
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PCA dictionary with K = 25

red pixels indicate negative values
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NMF dictionary with K = 25

experiment reproduced from (Lee and Seung, 1999)
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NMF as a constrained minimisation problem

Minimise a measure of fit between V and WH, subject to nonnegativity:

min
W,H≥0

D(V|WH) =
∑
fn

d([V]fn|[WH]fn),

where d(x |y) is a scalar cost function, e.g.,

I Euclidean distance (Paatero and Tapper, 1994; Lee and Seung, 2001)

I Kullback-Leibler divergence (Lee and Seung, 1999; Finesso and Spreij, 2006)

I Itakura-Saito divergence (Févotte, Bertin, and Durrieu, 2009)

I α-divergence (Cichocki et al., 2008)

I β-divergence (Cichocki et al., 2006; Févotte and Idier, 2011)

I Bregman divergences (Dhillon and Sra, 2005)

I and more in (Yang and Oja, 2011)

Regularisation terms often added to D(V|WH) for sparsity, smoothness,
dynamics, etc.

Common algorithmic design: alternative updates of W and H with
majorisation-minimisation.
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NMF for hyperspectral unmixing
(Berry, Browne, Langville, Pauca, and Plemmons, 2007)

2

Fig. 1. Hyperspectral imaging concept.

I. INTRODUCTION

Hyperspectral cameras [1]–[11] contribute significantly to earth observation and remote sensing [12],

[13]. Their potential motivates the development of small, commercial, high spatial and spectral resolution

instruments. They have also been used in food safety [14]–[17], pharmaceutical process monitoring and

quality control [18]–[22], and biomedical, industrial, and biometric, and forensic applications [23]–[27].

HSCs can be built to function in many regions of the electro-magnetic spectrum. The focus here is

on those covering the visible, near-infrared, and shortwave infrared spectral bands (in the range 0.3µm

to 2.5µm [5]). Disregarding atmospheric effects, the signal recorded by an HSC at a pixel is a mixture

of light scattered by substances located in the field of view [3]. Fig. 1 illustrates the measured data.

They are organized into planes forming a data cube. Each plane corresponds to radiance acquired over a

reproduced from (Bioucas-Dias et al., 2012)

17



NMF for audio spectral unmixing
(Smaragdis and Brown, 2003)
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Non-Negative Matrix Factorization 

! All factors are positive-valued:  
! Resulting reconstruction is additive 
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reproduced from (Smaragdis, 2013)
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Model selection

I NMF based on the minimisation of a measure of fit:

min
W,H≥0

D(V|WH) =
∑
fn

d([V]fn|[WH]fn)

I what is the right measure of fit ?

I can sometimes be derived from a probabilistic model, but not always.

I squared Euclidean distance often a default choice, but not always optimal.
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Model selection by completion

≈

I randomly remove coefficients from V (with indices in M)

I for a set of candidate measures d(·|·), solve

min
W,H≥0

D(V|WH) =
∑

(f ,n)∈O

d([V]fn|[WH]fn)

I reconstruct missing entries with [WH]fn, compare with original data [V]fn
(for indices in M)

I choose the measure d(·|·) that provides best reconstruction
(according to a task-specific performance measure)
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Hyperspectral data completion

I two datasets of dimensions F ∼ 150 and N = 50× 50, from
I the Aviris hyperspectral cube over Moffett Field (CA)
I the Madonna hyperspectral cube over Villelongue (FR)

I candidate measures of fit from the β-divergence family

I evaluation using the average spectral angle mapper (aSAM)

aSAM(V, V̂) =
1

N

N∑
n=1

acos

(
〈vn, v̂n〉
‖vn‖‖v̂n‖

)
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β-divergence

Popular cost function in NMF (Basu et al., 1998; Cichocki and Amari, 2010):

dβ(x |y)
def
=


1

β (β−1)

(
xβ + (β − 1) yβ − β x yβ−1

)
β ∈ R\{0, 1}

x log x
y + (y − x) β = 1

x
y − log x

y − 1 β = 0

Special cases:

I squared Euclidean distance (β = 2)

I Kullback-Leibler (KL) divergence (β = 1)

I Itakura-Saito (IS) divergence (β = 0)

Behaviour with respect to scale: dβ(λx |λy) = λβdβ(x |y).
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The β-divergence
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The β-divergence
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The β-divergence

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

y

d(x=1|y)

 

 

β = 2 (Euc)

β = 1 (KL)

β = 0 (IS)

26



The β-divergence
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The β-divergence
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Hyperspectral data completion results
(Févotte and Dobigeon, 2014)
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Best reconstruction for β ≈ 1 (≈ KL divergence), though values of in [0,2]
yield sensibly similar results.
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Audio spectral data completion results
(King, Févotte, and Smaragdis, 2012)

I similar experiment conducted with music data.

I best reconstructions for β ∈ [0, 1], depending on the spectrogram
parameters.

I range of divergences more sensitive to small energies – because of
dβ(λx |λy) = λβdβ(x |y).
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Audio bandwidth extension
(Sun and Mazumder, 2013)

Y =

V = 

Full-band training samples Band-limited samples

adapted from (Sun and Mazumder, 2013)
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Audio bandwidth extension
(Sun and Mazumder, 2013)

AC/DC example

band-limited data (Back in Black) training data (Highway to Hell)

bandwidth extended ground truth

Examples from http: // statweb. stanford. edu/ ~ dlsun/ bandwidth. html , used with
permission from the author. 33

http://statweb.stanford.edu/~dlsun/bandwidth.html
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