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Turbulence
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A few words about turbulence

3D, randomness, vorticity, mixing...

Dissipation weak (large Reynolds and Rayleigh
numbers) but crucial

Large spectrum of spatial and temporal scales
“Chaotic”, “Intermittent” Dynamics

Presence of organized patterns: coherent
structures



Missing data

* Spatio-temporal complexity cannot be entirely captured:

* in experiments:

— few sensors
— intruding measures

— noisy signals

* in numerical simulations.

— spatial scale resolution (both large and small)
— “short” integration times



The organization of turbulence

* Complex inter-dependence between all scales
of the flow

=>» A structure-based representation of fluid
flows

e Spatial patterns: Proper Orthogonal

Decomposition (Principal Component Analysis,
Karhunen-Loeve Decomposition)



Proper Orthogonal Decomposition

(POD)
Separation u(x,t) = Ea”(t)i,"@)
Optimization Ma < u(x,1)9(x) >

X
< ¢(x) P(x) >

=>»Eigenvalue . N
oo | [ < uenux' .0 > gx)dx' = Ag(x)

Orthogonality <a'"(t)a"(t)>=6, A
[¢" 09" dx =3,

If pis known,|knowledge of u(x,t) €= a"(7) = fgt(g,t).ql)” (x)dx




POD: Method of Snapshots

Sirovich (1987)

Finite Size of the practical problem: N flow realizations (snapshots)
N

< u(x,Nu(x',r) >= %Ez@,t”)y(f,t”)

n=1

If N independent realizations, eigenfunctions can be written in that base

¢"(x) = Y Alu(x.t")

Equivalent eigenvalue problem

[ <ux.nu'0 > 4" (x)dx' = ¥ ¢"(x) < % | wxruxrmydxAl = X A”

Determining structure amplitude

@’ (t") = [u(x,t") 9" @)dx = [ uCx,t")u(x,t)A? dx= A,




Missing data : Gappy POD (Everson and Sirovich 95)

1 if information accessible

Consider realization u(x,,t) =u; —h; =y .= . . | ,
0 if missing information

- Case 1: IF Eigenfunctions are fully known (full set of snapshots)
u(x,f)= Y, a"(N¢"(x)? Estimate &"such that B, a" =b,

n=1

B,, =Y, ¢"(@)¢" (x)h;

b = M(li’t)(pn(li)hit

- Case 2: IF Eigenfunctions are not fully known (incomplete set of snapshots):
-Solve eigenvalue problems for successive (k) snapshots sets

u(x,t") = u(x, t") if b =1

u(x;,t") = u* P (x, ") if A =0

U (x ") = E aly (1)) (x) ik >2 =>»Determine eigenfunctions fullyj
m=l =» Go to Casel
where - N

1
) n nN\7. N
u'(x,,t")=— E u(x,,t"Hh;
| b (—l ) N —(—l ) 1

n=1




Extended POD (Borée 2002)

Consider N realizations q(x,t) with dim(q)=r and apply Snapshot ( if necessary Gappy)
POD to p<r components

g ¢ o'\ [d(t) d(t)... a) Jqxs)
q, y ¢, 0| |a’(r) d’(1)... a'(t,) | q,(x1,)
q; (Lt)=za"(t) ¢y (x) with | ¢} | =|a’(t) a’'(t,)... a’(t,)]q5(xs3)
q, ¢, ¢ \a'(t) a'(t)... a'(t,)\q,(x1,)

It is possible to define extended structures on the remaining r-p=r’ components

using Opor| |(a't) d'(t)... d'(t,) \lg,.(xs)
¢;+2 a2(t1) az(tz)"' az(tn) Qp+2(£l2)
¢ |2ld’ @) a'@y)... a@)||g,..(x1)

" a' () a'(t,)... a"(t,) Ng.(x£,)

Applications: - Investigate coupling between different components of the realization
(e.g p-components: velocity, r’ component: pressure )

- Inverse design (e.g p-component: pressure distribution, r’-
components: geometry)



Reconstruction from partial instantaneous
measurements and full statistics

¢(x) known, u(x,t) on H (h) C Q= u(x,z) on Q7

u(x,t) = E a'(t)¢" (x): Determine a" (t)Vn

E¢ (x) 9" (x)h!

B _a" =b where -
b, = 2 w(x,,0) 4" (x)h

i

But...
Can any flow realization be exactly represented in the finite POD basis?

What happens if | consider a smaller number of modes?

How robust is the estimation procedure?



Application: Flow over cavity
Spatial POD eigenfunctions

Shear layer modes (1 and 2)

2-D, 2-C measurement plane

ME
FLQ

Incompressible flow Re=7500 Total vorticity Streamwise vorticity
Code OLORIN (Y. Fraigneau)

Goal: Estimate Full 3D flow from 3D,3C POD basis and 2D,2C
plane of measurements




Estimation of POD amplitudes

Podvin et al., JFE
2006

Energy fraction
160 modes
(exact)

80 modes
(estimation)
60 modes
(estimation)

a"(t)

Cavity
modes

Shear
modes

50

2)

80 modes

60 modes

T T T T
reconstructed coefficient using 80 modes
---- true 3-D coefficient

T T T T
reconstructed coefficient using 60 modes
---- true 3-D coefficient

AANAAAAANANDNAANNAAADNNA

W\ JANVNIEA p\A i\ AM A M1
VAR i W T
NI, N WA ) Dp
\/Wﬂ/wﬂ}ﬂz
SN
R g FE TN APl ¥ W T v

AANAANADANANDANNNAAADNA

AVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAY
NANAAADNPANNANANAAADNNAA

VAYAVAVAVAVAVAVAVAVAVAYAVAVAVAVAVRVAVAVAVAVAY
NADMAAARANANANANANAAANNAA

VAVAYAYAAAYAVAVAVAVAVAVAVAVAVAVAVAVAVAVRURY

VVVUVVVVVVUVVVVVVYYVVYVVY

55 60 65

b)

50 55 60 65

First POD modes are well recovered but full
reconstruction remains a challenge




Application:
Synthetic wall boundary conditions for
the simulation of wall turbulence

Context:High Reynolds number calculations require fine resolution next to the
wall (wall layer) as the dynamics are dominated by small scales

Goal: Simulate turbulence accurately (= get statistics right!) in a restricted
domain (H) using a synthetic boundary condition which mimics the top of the
wall layer.

4

“&—*  99% of the grid
points in 10% of
BL at Re™~10°

‘
\ Synthetic e DNS, LES
, Boundary Universal Model? i1 Pob

Condition

Mean flow direction

Reference DNS: SUNFLUIDH code (Y. Fraigneau)

Re = uch =590 where u, = vad—U
v dy wall




Synthetic boundary condition
4

DNS, LES
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Boundary
condition
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/{OD-based condition

u(x,y,z,t) = gbl’}c(y)ez’”lxezz.”kZ
lkn

\
DNS/LES Channel flow R
Re=180, 590, 1000
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Recoverable

modes

Feedback estimation (full reconstruction)

Badly estimated modes

k. ~2k, -

/1— Solve approximate linear system \
nm m n
[sz a, = blk]\A
/

By = [ ¢p(0)¢) (x)dx by = [ wa.ng' (x)dx
Q

Q-Q,

e 2-Select “recoverable” modes
nn nn
= set aq;, =0 when Blk <f, I= BlO.lkC

e 3-Set L? norm of each fluctuating compo-
nent

[ u2dndz = C? /




Full reconstruction Re=590
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Full reconstruction (Re=590)
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Feedback estimation (phase reconstruction)

11
Blk

Recoverable
modes

/1- Estimate phase of POD mode with \
constant modulus

a, = ()\.’Zk)” 2Arg[bl'}<]

Xy =<lay (1) P> by = [ u(x.ng’ (x)dx

Q-Q,

e 2-Select “recoverable” modes
nn nn
= set aq;, =0 when Blk <f, I= BlO.lkC

e 3-Set L? norm of each fluctuating compo-

nent
f u'dxdz = C; /




Phase reconstruction Re=590
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Phase reconstruction Re=590

20

Little sensitivity 15
to exact value
of threshold
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Phase reconstruction t=0.5
(1/0.41) log(y+) + 5.5
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Correct slope

Grid resolution -50%
Computational cost +15%

Ll
10'

v+

Statistics are improved with time-dependent phase
reconstruction.




Conclusion

* Missing data in turbulence can be recovered with
stochastic tools (POD, Gappy POD)

e 2 examples for turbulent flows:

— Reconstruction of 3D structures from 2D
measurements

— Efficient Simulation of channel flow

 Mathematical tools need to be tailored to flow
physics (effect of small scales in turbulence)
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